
Associative law : $\mathbf{A U}(\mathbf{B U C})=($ AUB $) \mathrm{UC}$

$$
\mathbf{A} \cap(\mathbf{B} \cap \mathbf{C})=(\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C}
$$

Distributive law : $\quad \mathbf{A U}(\mathbf{B} \cap \mathbf{C})=(\mathbf{A U B}) \cap(\mathbf{A U C})$ $\mathbf{A} \cap(\mathbf{B U C})=(\mathbf{A} \cap \mathbf{B}) \mathbf{U}(\mathbf{A} \cap \mathbf{C})$
DeMargones law : $(\mathbf{A U B})^{1}=A^{1} \cap \mathbf{B}^{1} \quad(A \cap B)^{1}=A^{1} U B^{1}$
Relationship between number of elements of the sets :
$\mathbf{n}(\mathbf{A})+\mathbf{n}(\mathbf{B})=\mathbf{n}(\mathbf{A U B})+\mathbf{n}(\mathbf{A} \cap \mathbf{B})$
$\mathbf{n}(\mathbf{A})=\mathbf{n}(\mathbf{A U B})+\mathbf{n}(\mathbf{A} \cap \mathbf{B})-\mathbf{n}(\mathbf{B}) \mathbf{n}(\mathbf{B})=\mathbf{n}(\mathbf{A U B})+\mathbf{n}(\mathbf{A} \cap B)-\mathbf{n}(\mathbf{A})$ $\mathbf{n}(\mathrm{AUB})=\mathbf{n}(\mathbf{A})+\mathbf{n}(\mathbf{B})-\mathbf{n}(\mathbf{A} \cap \mathbf{B}) \mathbf{n}(\mathbf{A} \cap B)=\mathbf{n}(\mathbf{A})+\mathbf{n}(\mathrm{B})-\mathbf{n}(\mathrm{AUB})$ Series \& Sequence Formulae

	ARTHMETI C SERIES	GEOMETRI C SERIES	HARMONIC SERIES
STANDAR D FORM	a,a+d, a+2d,....	$a, a r, \mathrm{ar}^{2}, \mathrm{ar}^{3}, \ldots$	$\frac{\overline{\mathrm{i}}}{a}, \frac{\overline{\mathrm{i}}}{a+d}, \frac{\overline{1}}{a+2 d}, \ldots . .$
GENERAL FORM	$\begin{aligned} & \text { 2,4,6,8,...... } \\ & \text { 1.4.7.10,....... } \end{aligned}$	$\begin{aligned} & \text { 2,4,8,....... } \\ & \text { 1,3,9,27,.... } \end{aligned}$	$\begin{aligned} & \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \ldots \\ & \frac{1}{3}, \frac{1}{5}, \frac{1}{2}, \ldots \ldots . \end{aligned}$
n th TERM	$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$	$\mathrm{T}_{\mathrm{n}}=\mathrm{ar}{ }^{\mathrm{n}-1}$	$\mathrm{T}_{\mathrm{n}}=\frac{\mathbf{1}}{\mathrm{a}+(\mathrm{n}-1) \mathrm{d}}$
MEAN	$\mathrm{A}=\frac{a+b}{2}$	$\mathrm{G}=\sqrt{\mathbf{a b}}$	$\mathrm{H}=\frac{2 a b}{a+b}$
SUM OF n TERMS	$\begin{aligned} & S_{n}= \\ & \frac{n[2 a+(n-1)] d}{2} \end{aligned}$	1) $\mathrm{S}_{\mathrm{n}}=\frac{a\left(r^{n}-1\right)}{r-1}$ 2) $\mathrm{S}_{\mathrm{n}}=\frac{\begin{array}{r}r-1 \\ a\left(1-r^{n}\right)\end{array}}{1-r}$ 3) $\mathrm{S}_{\infty}=\frac{a^{1-r}}{1-r^{-}}$	$\begin{gathered} r>1 \\ r<1 \\ m \text { of } \infty \text { terms } \end{gathered}$

Meaning of ${ }^{n} P_{r}$: Types of Arrangements of r things out of n things.

$$
{ }^{n} P_{0}=1 .
$$

Meaning of ${ }^{n} \mathbf{C}_{\mathbf{r}}$: Types of selections of \mathbf{r} things out of \mathbf{n} things.

$$
\begin{array}{llll}
{ }^{\mathrm{n}} \mathbf{C}_{\mathrm{r}}==\frac{n!}{(n-r)!\cdot r!} & { }^{\mathrm{n}} \mathbf{C}_{\mathrm{n}}=\mathbf{1} & { }^{\mathrm{n}} \mathbf{C}_{\mathbf{1}}=\mathbf{n} & { }^{\mathrm{n}} \mathbf{C}_{0}=\mathbf{1} \\
& { }^{\mathrm{n}} \mathbf{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathbf{C}_{\mathrm{n}-\mathrm{r}} & { }^{\mathrm{n}} \mathbf{C}_{\mathrm{r}}=\frac{n p_{r}}{r!} &
\end{array}
$$

Probability : The chance of happening of an event when expressed quantitatively is called probability.
Random experiment: A random experiment is one in which the exact outcome cannot be predicted. However, one can list all the possible outcomes of the random experiment. For eg: *Tossing a coin * Throwing a die*Drawing a card from a well shuffled pack of cards
Sample point \& Sample space: The set of all possible outcomes of a randomexperiment is called a sample space. It is generally denoted by S. (i) $S=\{H, T\}$ (ii) $S=\{1,2,3,4,5,6\}$
sample space : Each element or memberof a sample space is calleda sample point. (i) H and T are sample points.
(ii) $1,2,3,4,5$ and 6 are sample points.

Event: every subset of the sample space is called an event.
Probability of an event: Probability of an event is a ratio of the number of elementary events favourable to the event E to the total number of elementary events in the sample space.
Probability of an event $=$ No of events favourable to the event
Total no of elementary events in sample space
$\mathbf{P}(\mathbf{A})=\underline{\mathbf{n}(\mathbf{A})}$
$\overline{\mathrm{n}(\mathrm{S})} \quad$ Note : $0 \leq P(A) \leq 1 \quad$ Probability of an event can be any fraction from 0 to 1 , including 0 and 1.
sure or certain event : An event of a random experiment is called a sure or certain event if any one of its elements will surely occur in any trial of the experiment. Probability of sure event is 1. impossible event :An event which will not occur on any account in any trial of the experiment is called an impossible event. Probability of an impossible event is 0 .
Complementary events: Suppose we throw a die once. Consider the two events,
(i) getting an even number $E=\{2,4,6\}$
(i) getting an odd number $E=\{1,3,5\}$

Compare the two events, "getting an odd number "and "not geting an even number'we observe that event E_{1} occurs only when event E_{2} doesnot occur and vice versa.These two events E1 and E_{2} are called complementary events.

Note : $\mathbf{P}\left(E_{1}\right)+P\left(E_{2}\right)=1$
Mutually exclusive events : Two or more events are said to be mutually exclusive if the occurance of one event prevents or excludes the occurance of other event. if E_{1} and E_{2} are two mutually exclusive events, then $E_{1} \cap E_{2}=$ if E_{1} and E_{2} are two mutually exclusive events, then $P\left(E_{1} \mathbf{U} \mathbf{E}_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$. This result is known as the addition rule of probability. Relationship between expressions and their H.C.F \& L.C.M : Product of any two expressions is equal to the product of their L.C.M \& H.C.F. If H and L are H.C.F \& L.C.M of two expressions A and B, then we have the following relations: 1) $A X B=H X L$
2) $A=\frac{H X L}{B}$
3) $B=\frac{H \times L}{A}$
4) $\mathrm{H}=\frac{\mathrm{AXB}}{\mathrm{L}}$
4) $L=\frac{A X B}{H}$
rationalisation of surds : Conversion of surd from irrational form into rational form by multipling with suitable surd is called rationalisation of surd
Note : 1) For mononial surds they itself are Rationalising factor . 2) For mononial surds coefficients cannot be taken
consideration. 3) For Binonial surds of the form (a+b)
Rationalising factor is in the form (a-b) .

$\begin{aligned} & \text { sl } \\ & \text { no } \end{aligned}$	Surd	Rationalising factor	$\begin{aligned} & \text { sl } \\ & \text { no } \end{aligned}$	Surd	Rationalising factor
1	$\sqrt{5}$	$\sqrt{5}$	7	$\sqrt{5}-\sqrt{3}$	$\sqrt{5}+\sqrt{3}$
2	$3 \sqrt{a}$	\sqrt{a}	8	$6 \sqrt{x}-4 \sqrt{y}$	$6 \mathrm{~V} x+4 \mathrm{~V} y$
3	$\sqrt{x+y}$	$\sqrt{x+y}$	9	$5 \sqrt{a}+3 \sqrt{b}$	5va-3vb
4	$-5 \sqrt{\text { x }}$	$-\sqrt{\mathbf{x}}$	10	$-10 \sqrt{a}+\sqrt{b}$	$-10 \sqrt{a}-\sqrt{b}$
5	$4 \sqrt{p+q}$	$\sqrt{\mathbf{p + q}}$	11	$-\sqrt{7}+3 \sqrt{2}$	$-\sqrt{7}-3 \sqrt{2}$
6	$3+\sqrt{2}$	$3-\sqrt{2}$	12	$\sqrt[3]{a}$	$\sqrt[3]{a^{2}}$

polynomials : an algebraic expression of the form, $p(x)=a_{0}+$
$a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3}+------------+a_{n} x^{n} \quad$ in which the variables involved have only non-negative integral exponents is called a polynomial in x. Degree of polynomial: The highest exponent of the variable in a polynomial is called its degree.
Division algorithm for polynomials:
If a and b are any two integers, then $a=b q+r$, where $0 \leq r \leq b$. If $p(x)$ and $g(x)$ are any two polynomials with $g(x) \neq 0$, then we can always find polynomials $q(x)$ and $r(x)$ such that $p(x)=g(x) \times$ $q(x)+r(x)$, where $r(x)=0$ or degree of $r(x)$ < degree of $g(x)$. Dividend $=($ Divisor \times Quotient $)+$ Remainder
Quadratic Equations : Standard form of Quadratic equation is $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$. (where $\mathrm{a} \neq 0$)
Standard form of pure Quadratic equation is $\mathbf{a x}^{2}+\mathrm{c}=0$.
If $b=0$ then Standard form of Quadratic equation becomes $\mathrm{ax}^{2}+\mathbf{c}=\mathbf{0}$. (Called pure Quadratic equation)
If $\mathbf{a}=\mathbf{0}$ then Standard form of Quadratic equation becomes $\mathbf{b x}+\mathbf{c}=\mathbf{0}$. (Called linear equation)
If $\mathbf{b} \neq \mathbf{0}$ then Standard form of Quadratic equation becomes $\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c}=\mathbf{0}$. (Called Adfected Quadratic equation)
The graph of $y=x^{2}, y=2 x^{2}, \ldots \ldots$ is called parabola
Nature of the roots of Quadratic equation is determined by the Descriminant $=b^{2}$ - 4ac.

	Value of Descriminant	Nature of the roots
$\mathbf{1}$	$\mathbf{b}^{2}-4 \mathbf{a c}=\mathbf{0}$	Roots are real \& equal.
2	$\mathbf{b}^{2}-4 \mathbf{a c}>\mathbf{0}$	Roots are real \& distinct.
3	$\mathbf{b}^{2}-4 a c<0$	Roots are imaginary

Sum of the roots $\quad: m+n=-b / a$
Product of the roots: $m n=c / a \quad$ If $m \& n$ are roots, the Quadratic equation is in the form $\mathbf{x}^{2}-(\mathbf{m}+\mathbf{n}) \mathbf{x}+\mathbf{m n}=0$
Circles : Minor segments substends obtuse angles.
Major segments substends acute angles.
semi segments substends right angles.
Nature of DCT \& TCTs:

Nature of DCT \& TCTs:	DCT	TCT
Distinct circles	2	2
externally touching circles	2	1
internally touching circles	1	None
intersecting circles	2	None
concentric circles	None	None
length of tangent	$\sqrt{d^{2}=(R-r)^{2}}$	$\sqrt{d^{2}=(R+r)^{2}}$

Theorem1: If two triangles are equiangular, then their corresponding sides are proportional.
Theorem 2: The areas of similar triangles are proportional to the squares of the corresponding sides.
Theorem 3 (Pythagoras theorem): In a right angled triangle, the Square on the hypotenuse is equal to the sum of the squares on the other two sides.
Theorem 4: If two circles touch each other, the point of contact and the centres of the circles are collinear.
Theorem 5: The tangents drawn to a circle from an external point are, (i) equal (ii) equally inclined to the line joining the external point and the centre (iii) subtend equal angles at the centre.
Trignometric ratios :

$\operatorname{Sin} \Theta=\frac{\text { Opp }}{\text { Hyp }}$	$\operatorname{Cosec} \Theta=\frac{\text { Hyp }}{\text { opp }}$
$\operatorname{Cos} \Theta=\frac{\text { Adj }}{\text { Hyp }}$	$\operatorname{Sec} \Theta=\frac{\text { Hyp }}{\text { Adj }}$
$\operatorname{Tan} \Theta=\frac{\text { opp }}{\operatorname{adj}}$	$\operatorname{Cot} \Theta=\frac{\text { adj }}{\text { opp }}$
$\operatorname{Tan} \theta=\frac{\sin \Theta}{\cos \Theta}$	$\operatorname{Cot} \theta=\frac{\cos \Theta}{\sin \Theta}$
$\operatorname{Sin} \theta=\frac{1}{\operatorname{cosec} \theta}$	$\operatorname{Cosec} \theta=\frac{1}{\sin \theta}$
$\operatorname{Cos} \theta=\frac{1}{\sec \theta}$	$\operatorname{Sec} \theta=\frac{1}{\cos \theta}$
$\operatorname{Tan} \theta=\frac{1}{\cot \theta}$	$\operatorname{Cot} \theta=\frac{1}{\tan \theta}$

Trignometric ratios for standard angles:

	0^{0}	30^{0}	${45^{0}}^{\prime 2}$	60^{0}	90^{0}
$\operatorname{Sin} \theta$	0	$\frac{1}{2}$	$\frac{\overline{1}}{\sqrt{\overline{2}}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\overline{1}}{\sqrt{2}}$	1	0
$\tan \theta$	0	$\frac{\overline{1}}{\sqrt{\overline{3}}}$	1	$\sqrt{3}$	N.D
$\operatorname{cosec} \theta$	N.D	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
$\sec \theta$	1	$\frac{\overline{2}}{\sqrt{3}}$	$\sqrt{2}$	2	N.D
$\cot \theta$	N.D	$\sqrt{3}$	1	$\frac{\overline{1}}{\sqrt{3}}$	0

Trignometric

simultaneous equatios:

1) $\operatorname{Sin}^{2} \theta+\cos ^{2} \theta=1$
2) $1+\tan ^{2} \theta=\sec ^{2} \theta$
3) $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$

Trignometric complementary angle ratios:

$$
\begin{array}{ll}
\operatorname{Sin}\left(90^{0}-A\right)=\cos A & \operatorname{Sin}\left(90^{0}-A\right)=\cos A \\
\operatorname{cosec}\left(90^{\circ}-A\right)=\sec A & \operatorname{Sec}\left(90^{\circ}-A\right)=\operatorname{cosec} A \\
\tan \left(90^{\circ}-A\right)=\cot A & \cot \left(90^{0}-A\right)=\tan A
\end{array}
$$

Coordinate Geometry : Horizontal line: The line parallel to earth surface is called Horizontal line vertical line : The line perpendicular to horizontal line is called vertical line. slope:
The ratio of the vertical distance to the horizontal distance is
called slope.

$$
\text { Slope }=\text { Vertical distance }
$$

Horizontal distance
The slope of a line is the tangent of the angle of its inclination.
It is generally denoted by $(\mathbf{m})=\tan \quad=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
*When vertical distance is less than the horizontal distance, slope is less than 1. * When vertical distance is equal to the horizontal distance, slope is equal to 1 . * When vertical distance is more than the horizontal distance, slope is more than 1.
Slope of a straight line passing through two given points:
Slope of a straight line passing through two_points A (x1, yI) and $B(x 2, y 2)$ is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Parallel lines have equal slopes. ($\mathbf{m}_{1}=\mathbf{m}_{2}$)
If two lines are mutually perpendicular then, the product of their slopes is -1 . ($\mathrm{m}_{1} \mathrm{X} \mathrm{m}_{2}=-1$)
The equation of a line with slope ' m ' and whose y-intercept is ' \mathbf{c} ' is given by $\mathbf{y}=\mathbf{m x}+\mathbf{c}$
Distance formula: Distance between two points: Distance
between two points $\left(\mathbf{x}_{1}, \mathrm{y}_{1}\right) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given by $\mathbf{d}=$

$$
\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
$$

Distance of a point in a plane from the origin: Distance of a point (\mathbf{x}, y) in a plane from the $\operatorname{origin}(0,0)$ is given by $d=$ $\overline{x^{2}+y^{2}} \quad$ Section Formula: AB be a line joining the points $\mathbf{A}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ and $\mathbf{B}\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)$ and point P divides the linesegment $A B$
inthe ratio $\mathrm{m}: \mathbf{n}$ then the coordinates of point \mathbf{P} is given by $\mathbf{x}, \mathbf{y}=\frac{\mathrm{mx}_{2}+\mathrm{mx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{my}_{1}}{\mathrm{~m}+\mathrm{n}}$
Mid point fomula :If P is the midpoint of $A B\left[\right.$ Here $A\left(x_{1}, y_{1}\right)$ and $\left.\mathbf{B}\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)\right]$ then coordinates of $\mathbf{P} \mathbf{x}, \mathbf{y}=\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}$ This is also called the mid point fomula.

	Un-grou	ed data	groupe	d data
Average,	$\overline{\mathbf{x}}=\frac{\sum \overline{\mathbf{x}}}{\mathbf{N}}$		$\overline{\mathbf{x}}=\frac{\mathrm{\Sigma fx}}{\mathrm{~N}}$	
Direct method	$\frac{\sum x^{2}}{N}$		$\frac{\sum f x^{2}}{N}-\frac{\sum f x^{2}}{N}$	
actual mean method.	$\frac{\sum \mathbf{d}^{2}}{\mathbf{N}}$		$\frac{\sum \mathbf{f d}^{2}}{\mathbf{N}}$	
assumed mean method	$\overline{\frac{\sum d^{2}}{N}-\frac{\sum d}{N}^{2}}$		$\frac{\sum_{f^{2}}^{N}-\frac{\sum f d^{2}}{N}}{}$	
Step deviation method	$\frac{\mathrm{dd}^{2}}{\mathrm{~N}}-\frac{\sum \mathrm{d}^{2}}{\mathrm{~N}}{ }^{2} \mathrm{XC}$		$\overline{\frac{\mathrm{\Sigma ff}^{2}}{\mathrm{~N}}-\frac{\mathrm{\Sigma fd}}{\mathrm{~N}}}{ }^{2} \mathrm{XC}$	
variance	$\text { C.v }=\frac{\bar{\sigma} \bar{x} 100}{\bar{x}}$			
Mensuration				
	LSA	TSA		Volum
Cylinder	$\mathrm{A}=2 \pi \mathrm{rh}$	$\mathrm{A}=\mathbf{2} \boldsymbol{\pi} \mathbf{r}(\mathrm{r}+\mathrm{h})$		$\mathrm{V}=\pi \mathrm{r}^{\mathbf{2}} \mathrm{h}$
Cone	$\mathrm{A}=\Pi \mathrm{rl}$	$\mathrm{A}=\boldsymbol{\pi r} \mathbf{r} \mathbf{r} \mathbf{l} \mathbf{l}$		$V=\frac{\pi r^{2} h}{3}$
Sphere	$\mathrm{A}=\mathbf{4} \mathrm{r}^{\mathbf{2}}$	$\mathrm{A}=4 \mathrm{rr}^{\mathbf{2}}$		$V=\frac{4 \pi r^{3}}{3}$
Hemispher e	$\mathrm{A}=\mathbf{2 \pi} \mathrm{r}^{\mathbf{2}}$	$\mathrm{A}=3 \boldsymbol{\pi} \mathrm{r}^{2}$		$\mathrm{V}=\frac{2 \pi \mathrm{r}^{2}}{3}$
Frustrum	$\pi\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right) \boldsymbol{I}$	$\pi\left[\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right) \mathbf{1}+\mathbf{r a}^{2}+\mathbf{r}^{2}\right]$		$\frac{\pi \mathbf{h}\left(\mathbf{r}_{1}{ }^{2}+\mathbf{r}_{2}^{2}\right.}{3}$

Identities: $(\mathbf{a}+\mathbf{b})^{2}=\mathbf{a}^{2}+b^{2}+2 a b \quad(a-b)^{2}=\mathbf{a}^{2}+b^{2}-2 a b$
$a^{2}-b^{2}=(a+b)(a-b) \quad(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$
$(x+a)(x+b)=x^{2}+x(a+b)+a b(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
$(a-b)^{3}=a^{3} b^{3}-3 a b(a-b) \quad a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)$
$\mathbf{a}^{3}-\mathbf{b}^{3}=(a-b)\left(\mathbf{a}^{2}+b^{2}+a b\right)$
$(x+a)(x+b)(x+c)=x^{3}+x^{2}(a+b+c)+x(a b+b c+c a)+a b c$
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
Pythagorean triplets: Set of three natural numbers, which makes a right angled triangle are called are called Pythagorean triplets.
Ex:1) 3, 4, 5
2) $5,12,13$
3) $\mathbf{6 , 8 , 1 0}$
4) $8,15,17$

Basic Proportionality Theorem (B.P.T) or
Thales Theorem: It can be stated as,
"If a straight line is drawn parallel to one side of a triangle, then it divides the
other two sides proportionally"
In $\triangle \mathrm{ABC}$ if DE II BC then $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{DC}}$
Converse of Thales Theorem: "If a straight line divides two sides of a triangle proportionally, then the straight line is parallel to the third side".
In $\triangle \mathrm{ABC}$ if $\underline{\mathrm{AD}}=\underline{\mathrm{AE}}$
DB $\overline{D C}$ then DE II BC
Corollary of Thales Theorem: If a straight line is drawn parallel to a side of a triangle then the sides of intercepted triangle will be proportional to the sides of the given triangle.
In $\triangle \mathrm{ABC}$ if DE II BC then $\underline{\mathrm{AD}}=\underline{\mathrm{AE}}=\mathrm{DE}$

$$
\frac{\mathbf{A D}}{\mathbf{A B}}=\frac{\mathbf{A E}}{\mathbf{A C}}=\underset{\mathbf{D C}}{\mathbf{D C}}
$$

Converse of pythagoras theorem :
"If the square on the longest side of a triangle is equal to the sum of the squares on the other two sides, then those two sides contain a right angle."
Note:
1 Kunta $=$ 33feetX 33feet
1 Acre = 40 Kuntas
1 Hectare $=100 \mathrm{mX} \mathrm{100m}=10000 \mathrm{~m}^{2}=2.5$ Acres

