

6 **STATISTICS**

Yakub Koyyru,GHS Nada,Belthangady Taluk,D.K-574214. Ph:9008983286Email:yhokkila@gmail.com

Un grouped data						
Direct Method	Actual Mean Method	Assumed Mean Method	Step-Deviation Method			
$\sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$	$\sqrt{\frac{\sum d^2}{n}}$	$\sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2}$	$\sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} \mathbf{x} \mathbf{C}$			

Grouped Data					
Direct Method	Actual Mean Method	Assumed Mean Method	Step-Deviation Method		
$\sqrt{\frac{\sum fx^2}{n} - \left(\frac{\sum fx}{n}\right)^2}$	$\sqrt{\frac{\sum f d^2}{n}}$	$\sqrt{\frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2}$	$\sqrt{\frac{\Sigma f d^2}{n} - \left(\frac{\Sigma f d}{n}\right)^2} \operatorname{xc}$		

Standard Deviation = $\sqrt{Variance}$

Coefficient of Variation(C.V) =
$$\frac{\sigma}{\overline{x}}$$
 x100

Example problems

Example: 1 The number of saplings planted by 8 students during a year are 2, 6, 12, 5, 9, 10, 7, 4. Calculate the standard deviation for the data. [By Direct Method]

²SSLC CLASS NOTES: CHAPTER 6- STATISTICS

Example2: The number of children born in 10 different hospitals during a month are 9, 12, 15, 18, 20, 22, 23, 24, 26, 31 Calculate the standard deviation. (By Actual Mean Method)

Х	$d = x - \overline{x}$	D^2				
9	-11	121				
12	-8	64				
15	-5	25				
18	-2	4				
20	0	0				
22	2	4				
23	3	9				
24	4	16				
26	6	36				
31	11	121				
$\sum x = 200$		$\sum d^2 = 400$				

Mean
$$(\bar{x}) = \frac{\sum x}{n} = \frac{200}{10} = 20$$

Standard Deviation $(\sigma) = \sqrt{\frac{\sum d^2}{n}} = \sqrt{\frac{400}{10}}$
Standard Deviation $(\sigma) = \sqrt{40} = 6.32$

Example3: The number of sick people who were treated as outpatients in a hospital on each day during a week are given below:

50, 56, 59, 60, 63, 67, 68	8 Calculate the standard deviation.	[By Assumed Mean Method]
----------------------------	-------------------------------------	--------------------------

Х	$\mathbf{d} = \mathbf{x} - \mathbf{A}$	d^2	
50	-10	100	Sol
56	-4	16	$\sigma =$
59	-1	1	0 -
60	0	0	$\sigma =$
63	3	9	$\sigma =$
67	7	49	$\sigma =$
68	8	64	
n=8	$\sum d = 3$	$\sum d^2 = 239$	

Sol: Let Assumed mean be A = 60. $\sigma = \sqrt{\frac{\Sigma d^2}{n} - \left(\frac{\Sigma d}{n}\right)^2} = \sqrt{\frac{239}{7} - \left(\frac{3}{7}\right)^2}$ $\sigma = \sqrt{34.14 - 0.18}$ $\sigma = \sqrt{33.96}$ $\sigma = 5.83$

Example 4: The number of books issued in a school library during the first ten days of the month are as follows:

20, 30, 40, 60, 80, 90, 110, 120, 130, 140 Calculate the standard deviation.

[By Step Deviation Method]

Х	$d = \frac{x-A}{C}$	d ²	$\sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} \times 10 = \sqrt{\frac{174}{10} - \left(\frac{-8}{10}\right)^2}$
20	-7	49	
30	-6	36	$\sigma = \sqrt{17.4 - 0.64} \text{ x10}$
40	-5	25	$\sigma = \sqrt{16.76} \times 10$
60	-3	9	$\sigma = 4.09 x 10$
80	-1	1	$\sigma = 40.9$
90	0	0	
110	2	4	
120	3	9	
130	4	16	
140	5	25	
n=10	$\sum d = -8$	$\sum d^2 = 174$	

³SSLC CLASS NOTES: CHAPTER 6- STATISTICS

Example5: The rainfall recorded in various places of five districts for six days are given below:

Rainfall in mm	35	40	45	50	55
Number of places	6	8	12	5	9

Calculate the standard deviation [By All four Method]

1. Direct Method

X	f	fx	x ²	fx
35	6	210	1225	7350
40	8	320	1600	12800
45	12	540	2025	24300
50	5	250	2500	12500
55	9	495	3025	27225
	n = 40	$\sum f \mathbf{x} = 1815$		$\sum f x^2 = 84175$

S.D.
$$(\sigma) = \sqrt{\frac{\sum fx^2}{n} - \left(\frac{\sum fx}{n}\right)^2} = \sqrt{\frac{84175}{40} - \left(\frac{1815}{40}\right)^2}$$

$$\sqrt{2104.38 - 2058.9} = \sqrt{45.48} = 6.7$$

2. Actual Mean Method

Х	f	fx	$d=x - \bar{x}$	d^2	fd^2
35	6	210	-10.4	108.2	649.2
40	8	320	-5.4	29.2	233.6
45	12	540	-0.4	1.6	19.2
50	5	250	4.6	21.2	106.0
55	9	495	9.6	92.2	829.8
	n = 40	$\Sigma f \mathbf{x} = 1815$			$\Sigma fd^2 = 1837.8$

$$\sqrt{\frac{\sum f d^2}{n}} = \sqrt{\frac{1837.8}{40}} = \sqrt{45.95} = 6.7$$

3. Assumed Mean Method

х	f	$\mathbf{d} = \mathbf{x} - \mathbf{A}$	fd	d^2	fd^2
35	6	-10	-60	100	600
40	8	-5	-60 -40	25	200
45	12	0	0	0	0
50	5	+5	+25	25	125
55	9	+10	+90	100	900
	n = 40		$\Sigma fd = +15$		$\Sigma f d^2 = 1825$

$$\sqrt{\frac{1825}{40} - \left(\frac{15}{40}\right)^2} = \sqrt{\frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2} = \sqrt{45.46} = 6.7$$

⁴SSLC CLASS NOTES: CHAPTER 6- STATISTICS

••	. Step Deviation Method						
	х	f	$d = \frac{x-A}{C}$	d ²	fd	fd ²	
	35	6	-2	4	-12	24	
	40	8	-1	1	-8	8	
	45	12	0	0	0	0	
	50	5	1	1	5	5	
	55	9	2	4	18	36	
		40			3	73	

4 Step Deviation Method

 $\sigma^2 = \sqrt{\frac{\sum fd^2}{n} - \left(\frac{\sum fd}{n}\right)^2} x c$ $\sigma^2 = \sqrt{\frac{73}{40} - \left(\frac{3}{40}\right)^2} x \ 10$ $\sigma^2 = \sqrt{1.825 - (0.075)^2} x \ 10 = \sqrt{1.825 - 0.005625} x \ 10 = \sqrt{1.82} x \ 10$ **S.D.** σ = 6.7

EXAMPLE6: The time (in seconds) taken by a group of students to solve a problem in mathematics is given in the table below.

C-I	0-10	10-20	20-30	30-40	40-50
f	7	10	15	8	10

Calculate the standard deviation of the data.

C.I.	Х	f	$d = \frac{x-A}{C}$	d ²	fd	fd ²	$\sigma = \sqrt{\frac{\sum fd^2}{n} - \left(\frac{\sum fd}{n}\right)^2} x c$
0-10	5	7	-2	4	-14	28	$0 = \sqrt{\frac{n}{n}} \left(\frac{n}{n}\right) \times C$
10-20	15	10	-1	1	-10	10	$\sigma = \sqrt{1.72} - (0.08)^2 \times 10^{-10}$
20-30	25	15	0	0	0	0	$\sigma = \sqrt{1.72 - 0.0064} \times 10$
30-40	35	8	1	1	8	8	$\sigma = \sqrt{1.71} x \ 10$
40-50	45	10	2	4	20	40	$\sigma = 1.31 \times 10^{-10}$
		50			+4	86	$\sigma = 13.1$

ILLUSTRATIVE EXAMPLES

Example1: Find the variance and standard deviation of the following scores: 68, 72, 80, 84, 92, 100

Х	$d = \frac{x-A}{C}$	d ²	
68	-4	16	
72	-3	9	
80	-1	1	
84	0	0	
92	2	4	
100	4	16	
	$\sum \mathbf{d} = -2$	$\sum d^2 = 46$	

Variance: $\sigma^{2} = \frac{\sum d^{2}}{n} - \left(\frac{\sum d}{n}\right)^{2} \ge C^{2} = \frac{46}{6} - \left(\frac{-2}{6}\right)^{2} \le 4^{2}$ $\sigma^{2} = 7.7 - 0.1 \ \text{x16}$ $\sigma^2 = 7.6 \times 16$ $\sigma^2 = 121.6$ Standard deviation: $\sigma = \sqrt{121.6} = 11.03$

⁵ SSLC CLASS NOTES: CHAPTER 6- STATISTICS

Marks	5-15	15-25	25-35	35-45	45-55	55-65
No.of students	8	12	20	10	7	3

Example2: The marks obtained by 60 students in a test are given as follows.

Calculate the mean and standard deviation of the distribution. Also interpret the results.

C.I.	X	f	d	d ²	fd	fd ²	$\overline{\mathbf{X}} = \mathbf{A} + \frac{\sum \mathbf{fd}}{n} \mathbf{xc}$
			$=\frac{\mathbf{x}-\mathbf{A}}{\mathbf{C}}$				$\overline{X} = 30 + \frac{5}{60} \times 10$ $\overline{X} = 30 + 0.8$
5-15	10	8	-2	4	-16	32	$\overline{X} = 30 + 0.8$
15-25	20	12	-1	1	-12	12	$\overline{\mathbf{X}} = 30.8$
25-35	30	20	0	0	0	0	
35-45	40	10	1	1	10	10	$\sigma = \sqrt{\frac{\sum fd^2}{n} - \left(\frac{\sum fd}{n}\right)^2} x c$
45-55	50	7	2	4	14	28	
55-65	60	3	3	9	9	27	$\sigma = \sqrt{\frac{109}{60} - \left(\frac{5}{60}\right)^2 x \ 10}$
		60			5	109	· · · · · · · · · · · · · · · · · · ·
-							$\sigma = \sqrt{1.82 - (0.08)^2} x 10$

 $\sigma = \sqrt{1.82 - 0.0064} x \ 10 = \sqrt{1.81} x \ 10 = 1.34 x \ 10$ $\sigma = 13.4$

This means, on an average each score deviates from the mean value 30.8 by 13.4.

Example 3: The mean of 30 scores is 18 and their standard deviation is 3. Find the sum of all the scores and also the sum of the squares of all the scores

Sol:
$$\bar{x} = \frac{\sum x}{n}$$

 $\Rightarrow 18 = \frac{\sum x}{30}$
 $\Rightarrow \sum x = 540$ the sum of all the scores
 $\sigma^2 = \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$
 $9 = \frac{\sum x^2}{30} - \left(\frac{540}{30}\right)^2$
 $9 = \frac{\sum x^2}{30} - 324$
 $\sum x^2 = (9 + 324)30 = 9990$

Exercise 6.1

Calculate the standard deviation for the following by step deviation.

1. Calculate the standard deviation of the following data.

X	3	8	13	18	23
f	7	10	15	10	8

⁶SSLC CLASS NOTES: CHAPTER 6- STATISTICS

Х	f	$d = \frac{x - A}{C}$	d ²	fd	fd ²
3	7	-2	4	-14	28
8	10	-1	1	-10	10
13	15	0	0	0	0
18	10	1	1	10	10
23	8	2	4	16	32
	50			2	80

$$\sigma = \sqrt{\frac{\Sigma f d^2}{n} - \left(\frac{\Sigma f d}{n}\right)^2} x c$$

$$\sigma = \sqrt{\frac{80}{50} - \left(\frac{2}{50}\right)^2} x 5$$

$$\sigma = \sqrt{1.6 - (0.04)^2} x 5$$

$$\sigma = \sqrt{1.6 - 0.0016} x 5$$

$$\sigma = \sqrt{1.5984} x 5$$

$$\sigma = 1.264 x 5 =$$

$$\sigma = 6.32$$

2. The number of books bought by 200 students in a book exhibition is given below.

No. of Books (x)	0	1	2	3	4
No.of students (f)	35	64	68	18	15
This 1 (1) 1		••			

Find the variance and standard deviation.

х	f	$d = \frac{x-A}{C}$	d ²	fd	fd ²
0	35	-2	4	-70	140
1	64	-1	1	-64	64
2	68	0	0	0	0
3	18	1	1	18	18
4	15	2	4	30	60
	200			-86	282

$$\sigma^{2} = \left[\frac{\sum fd^{2}}{n} - \left(\frac{\sum fd}{n}\right)^{2}\right] x c$$

$$\sigma^{2} = \left[\frac{282}{200} - \left(\frac{-86}{200}\right)^{2}\right] x 1$$

$$\sigma^{2} = [1.41 - (-0.43)^{2}] x 1$$

$$\sigma^{2} = [1.41 - 0.1849] x 1$$

$$\sigma^{2} = [1.23] x 1$$

Variance $\sigma^{2} = 1.23$
Standard Decision of a finite second of a second sec

- Standard Deviation $\sigma = 1.109$
- 3. The marks scored by 60 students in a science test are given below.

Marks(x)	10	20	30	40	50	60
No.of students(f)	8	12	20	10	7	3

⁷SSLC CLASS NOTES: CHAPTER 6- STATISTICS

 $d = \frac{x-A}{A}$ f d^2 fd fd² Х С 10 8 -2 4 -16 32 12 12 -12 20 -1 1 30 20 0 0 0 0 40 10 1 1 10 10 7 2 28 50 4 14 3 3 9 27 60 9 5 60 109 ವಿದ

Calculate the variance and standard deviation.

$$\sigma^{2} = \left[\frac{\sum fd^{2}}{n} - \left(\frac{\sum fd}{n}\right)^{2}\right] x c^{2}$$

$$\sigma^{2} = \left[\frac{109}{60} - \left(\frac{5}{60}\right)^{2}\right] x 100$$

$$\sigma^{2} = [1.8166 - (-0.083)^{2}] x 100$$

$$\sigma^{2} = [1.8166 - 0.0069] x 100$$

$$\sigma^{2} = [1.809] x 100$$

Variance $\sigma^{2} = 180.9$

Standard deviation $\sigma = 13.45$

4. The daily wages of 40 workers of a factory are given in the following table.

Wages in (In Rs)	30-34	34-38	38-42	42-46	46-50	50-54
No. of workers	4	7	9	11	6	3

Calculate (i) Mean (ii) Variance and (iii) Standard deviation of wages and Interpret the findings.

C.I.	Х	f	$d = \frac{x-A}{C}$	d ²	fd	fd ²	$\overline{\mathbf{X}} = \mathbf{A} + \frac{\sum \mathbf{fd}}{n} \mathbf{xc}$
30-34	32	4	-3	9	-12	36	$\overline{X} = 44 + \frac{-23}{40} x4$
34-38	36	7	-2	4	-14	28	$\overline{\mathbf{X}} = 42 - 2.3$
38-42	40	9	-1	1	-9	9	$\overline{\mathbf{X}} = 41.7$
42-46	44	11	0	0	0	0	$\sigma^2 = \left[\frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2\right] x$
46-50	48	6	1	1	6	6	
50-54	52	3	2	4	6	12	$\sigma^2 = \left[\frac{91}{40} - \left(\frac{-23}{40}\right)^2\right] \times 4^2$
		40			-23	91	$\begin{bmatrix} 0 & 40 & 40 \end{bmatrix}^{A^{-1}} \sigma^{2} = \begin{bmatrix} 2.275 - (-0.575) \end{bmatrix}^{A^{-1}}$

.....

 $\sigma^2 = [2.275 - 0.3306] \times 16$ $\sigma^2 = [1.944] \times 16$

Variance $\sigma^2 = 31.11$

Standard deviation $\sigma = 5.58$

This means, on an average each score deviates from the mean value 41.7 by 5.58.5. Mean of 100 items is 48 and their standard deviation is 10. Find the sum of all the Items and the sum of the squares of all the items.

$$\overline{X} = \frac{\sum x}{n}$$

$$48 = \frac{\sum x}{100}$$

$$\sum x = 48x100$$

$$\sum x = 4800$$

$$\sigma^{2} = \left[\frac{\sum x^{2}}{n} - \left(\frac{\sum x}{n}\right)^{2}\right]$$

$$10^{2} = \left[\frac{\sum x^{2}}{100} - (48)^{2}\right] \quad [\because \frac{\sum x}{n} = \overline{X}]$$

$$100 = \left[\frac{\sum x^{2} - 230400}{100}\right]$$

$$10000 = \frac{\sum x^{2} - 230400}{100}$$

$$\sum x^{2} = 10000 + 230400 = 2,40,400$$

6. In a study of diabetic patients in a village, the following observations were noted.

Age(in years)	10-20	20-30	30-40	40-50	50-60	60-70
No.of patients	2	5	12	19	9	3

Calculate the mean and standard deviation. Also interpret the results.

C.I.	X	f	$d = \frac{x-A}{C}$	d ²	fd	fd ²	$\overline{\mathbf{X}} = \mathbf{A} + \frac{\sum \mathrm{fd}}{\mathrm{n}} \mathrm{xc}$
10-20	15	2	-3	9	-6	18	$\overline{\mathbf{X}} = \mathbf{A} + \frac{\overset{\mathbf{n}}{-13}}{\overset{\mathbf{n}}{50}} \mathbf{x} 10$
20-30	25	5	-2	4	-10	20	$\overline{X} = 45 - 2.6$
30-40	35	12	-1	1	-12	12	$\overline{\mathbf{X}} = 42.4$
40-50	45	19	0	0	0	0	$\sum fd^2 (\sum fd)^2$
50-60	55	9	1	1	9	9	$\sigma = \sqrt{\frac{\sum fd^2}{n} - \left(\frac{\sum fd}{n}\right)^2} x c$
60-70	65	3	2	4	6	12	
		50			-13	71	$\sigma = \sqrt{\frac{71}{50} - \left(\frac{-13}{50}\right)^2 x \ 10}$

$$\sigma = \sqrt{1.42 - (0.26)^2 x} \ 10 = \sqrt{1.42 - 0.0676} x \ 10$$

$$\sigma = \sqrt{1.3524} x \ 10$$

 $\sigma = 1.163 \times 10^{-1}$

$$\sigma = 11.63$$

This means, the average age of the patient is 42.4 years and the age of the patients is deviated from the average age by 11.68

ILLUSTARTED EXAMPLES

Example1: The total runs scored by two cricket players Arun and Bharath in 15 matches are 1050 and 900 with standard deviation 4.2 and 3.0 respectively. Who is better run getter? Who is more consistent in performance?

Sol: Average score of Arun =
$$\frac{1050}{15} = 70$$

Average score of Bharath =
$$\frac{900}{15}$$
 = 60

Player	Average	S.D.	C.V.= $\frac{\sigma}{\bar{x}}$ x100
Arun	70	4.2	$=\frac{4.2}{70}$ x100 = 6
Bharath	60	3.0	$=\frac{3.0}{60}$ x100=5

⁹ SSLC CLASS NOTES: CHAPTER 6- STATISTICS

(i) The average score of Arun is greater than average score of Bharath, hence Arun is a better run getter

(ii) The coefficient of variation of Bharath is less than coefficient of variation of Arun, hence Bharath is more consistent.

Example2: Calculate the standard deviation and coefficient of variation for the following distribution.

X	10	20	30	40	50
f	4	3	6	5	2

x	f	fx	$d = x - \overline{x}$	d ²	fd ²	$\overline{\mathbf{X}} = \frac{\sum fx}{\sum fx} = \frac{580}{29} = 29$	
10	4	40	-19	361	1444	n 20	
20	3	60	-9	81	243	$\sigma = \sqrt{\frac{\sum f d^2}{n}}$	
30	6	180	1	1	6		
40	5	200	11	121	605	$\sigma = \sqrt{\frac{3180}{20}} = \sqrt{159} = 12.61$	
50	2	100	21	441	882	$\int \sqrt{\frac{20}{\pi}} \sqrt{\frac{20}{\pi}} \sqrt{\frac{10}{\pi}} $	
	20	580			3180	$: C.V. = \frac{\sigma}{\bar{x}} \times 100$	
⇒C.V	$\Rightarrow C.V. = \frac{12.61}{29} \times 100 \Rightarrow 43.48$						

Exercise 6.2

1. Calculate the coefficient of variation of the following data: 40, 36, 64, 48, and 52.

Χ	d=X-A	d ²	$-\Sigma d$
36	-12	144	$\overline{X} = A + \frac{\sum d}{n}$
40	-8	64	$\bar{X} = 48 + 0$
48	0	0	$\overline{X} = 48$
52	4	16	$\sqrt{\sum d^2}$ $(\sum d)^2$
64	16	256	$\sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2}$
	0	480	
			$\sigma = \sqrt{\frac{480}{5}} - (0)^2 = \sqrt{96} - 0 = \sqrt{96} = 9.798$
$C.V = \frac{\sigma}{\bar{X}} x 10$	$\Rightarrow C_V =$	$=\frac{9.798}{48}$ x100	= 20.41

2. If the coefficient of variation of a collection of data is 45 and its standard deviation is 2.5, then find the mean.

$$C.V = \frac{\sigma}{\overline{X}} \times 100$$
$$45 = \frac{2.5}{\overline{X}} \times 100$$
$$\overline{X} = \frac{2.5}{45} \times 100$$

X =5.55

3. A group of 100 candidates attending a physical test for recruitment have their average height as 163.8 cm with coefficient of variation 3.2. What is the standard deviation of their heights? $C.V = \frac{\sigma}{\overline{v}} x 100$

¹⁰SSLC CLASS NOTES: CHAPTER 6- STATISTICS

 $3.2 = \frac{\sigma}{163.8} \times 100$ $\sigma = \frac{3.2}{100} \times 163.8$ $\sigma = 5.24$

4. If n = 10, $\overline{X} = 12$ and $\sum x^2 = 1530$ then calculate the coefficient of variation.

$$\sigma = \sqrt{\frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2}$$

$$\sigma = \sqrt{\frac{1530}{10} - (12)^2} \quad [\because \frac{\Sigma x}{n} = \overline{X}]$$

$$\sigma = \sqrt{153 - 144}$$

$$\sigma = \sqrt{9}$$

$$\sigma = 3$$

$$\sigma = 9.798$$

$$C.V = \frac{\sigma}{\overline{X}} \times 100$$

$$C.V. = \frac{3}{12} \times 100$$

$$C.V. = 25$$

5. The coefficient of variations of two series are 58 and 69. Their standard deviations are 21.2 and 51.6. What are their arithmetic means?

Grade	C.V.	S.D.	$\overline{\mathbf{X}} = \frac{\sigma}{(\mathbf{C}.\mathbf{V})} \mathbf{X} 100$
1	58	21.2	$\overline{X} = \frac{21.2}{\overline{58}} \times 100 = 36.55$
2	69	51.6	$\overline{X} = \frac{51.6}{\overline{69}} \times 100 = 74.78$

6. Batsman A gets an average of 64 runs per innings with standard deviation of 18 runs, while batsman B get an average score of 43 runs with standard deviation of 9 runs in an equal number of innings. Discuss the efficiency and consistency of both the batsmen.

Grade	Average	S.D.	$(C.V) = \frac{\sigma}{\overline{\chi}} \times 100$
A	64	18	$(C.V) = \frac{18}{64} \times 100 = 28.125$
В	43	9	$(C.V) = \frac{9}{43} \times 100 = 20.93$

The average of A is more. \therefore A is more efficient

The coefficient of variance of B is less. \therefore B is more consistant player.

7. In two construction companies A and B, the average weekly wages in rupees and the standard deviations are as follows.

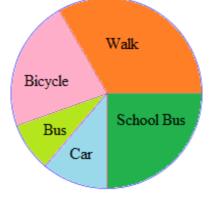
Company	Average of wages (in R s)	S.D of wages in Rs
Α	3450	6.21
В	2850	4.56

Determine which factory has greater variability in individual wages?

¹¹SSLC CLASS NOTES: CHAPTER 6- STATISTICS

Company	Average of wages (in Rs)	S.D of wages in Rs	$(C.V) = \frac{\sigma}{\overline{X}} \times 100$
Α	3450	6.21	$(C.V) = \frac{6.21}{3450} \times 100 = 0.18$
В	2850	4.56	$(C.V) = \frac{4.56}{2850} \times 100 = 0.16$

The coefficient of variance of the company A is more.∴A is greater variability.



Example1: There are 36 students in a class. The following table shows how they usually come to school represent this data in a pie- chart.

Walk	Bicycle	Bus	Car	School Bus	
12	8	3	4	9	
Each student correspondents $\frac{360}{100} - 100$					

ſ	Walk	10	$10 \times 10 - 10$
	Each student	corresponds ($\frac{10}{36} = 10^{-1}$

Walk	12	12x10=120 ⁰
Bicycle	8	8x10 =80°
Bus	3	3x10 =30 ⁰
Car	4	4x10=40 ⁰
School Bus	9	9x10=90 ⁰
Total	36	360 ⁰

Example2: The four important types of trees found in one square kilometer of a forest area are given in the table. Draw a pie-chart.

Teak woo	d I	Rose wood	Devadaru	Eucalyptus	
360		300	285	135	
Each tree corre	sponds t	$\frac{360}{36} = 10$	$0 = \frac{360}{1080} = \frac{1}{3}^{0}$		
Teak wood	360	3	$60x \frac{1}{3} = 120^{0}$	/	Teak wood
Rose wood	300	3	$\begin{array}{c} 00x \frac{1}{3} = \\ 100^{0} \end{array}$		Rose Wood Eucalypt
Devadaru	285	$285x\frac{1}{3}$	= 95 ⁰		Devadaru
Eucalyptus	135	$135x\frac{1}{3}$	$= 45^{0}$		
	108	0 30	50 ⁰		

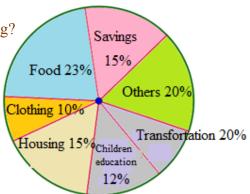
Yakub Koyyur,GHS Nada:Email:yhokkila@gmail.com

11

¹²SSLC CLASS NOTES: CHAPTER 6- STATISTICS

Example3: The pie chart given below shows the expenditure of a family on various items and its savings during a year.

Study the pie chart and answer the following questions


(i) If the total annual income of the family is **Rs** 75,000, what is the expenditure on children education?

- (ii) What amount of income was spent on clothing?
- (iii) How much of family's income is saved?
- (iv) How much is the expenditure on food more than
- that on housing?

(v) What is the difference in the expenses on housing? and transport?

Sol:

Expenditure	Percentage
Savings	15%
Food	23%
Clothing's	10%
Housing	15%
Children education	12%
Transfort	20%
others	20%

1. Expenditure on children education:
$$=\frac{12}{100} \times 75000 = \text{Rs}9000$$

2. Expenditure on clothing = $\frac{10}{100}$ x75000 = Rs7500

3. Given, 15% of income is saved $=\frac{15}{100}$ x75000 = Rs11,250

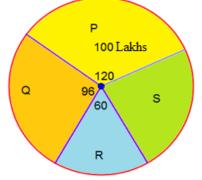
4. More Expenditure on food than the expenditure on housing

= Expenditure on food - expenditure on housing

 $=\frac{23}{100} \times 75000 - \frac{15}{100} \times 75000 = 17250 - 11250 = \text{Rs}\ 6000$

5. Difference in the expenses on housing and transport is

$$\frac{20}{100}$$
 x75000 = $\frac{15}{100}$ x75000 = 15,000 - 11,250 = Rs 3,750


[In this problem we get the total of percentages = 115%. It is wrong, Still solve the problem according to given data]

Example4: A pie chart representing the population of four cities is shown below. Read the pie chart and find the population of S.

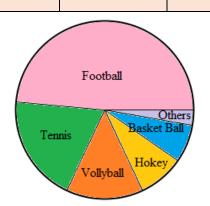
Sector of 84° corresponds represents the Population of city S

:. The population of city
$$S = \frac{120}{360} = 100$$

 $\frac{84}{360} = ?$

$$\Rightarrow \frac{84}{360} \ge 100 \ge \frac{360}{120} = 70 \text{Laks}$$

¹³SSLC CLASS NOTES: CHAPTER 6- STATISTICS

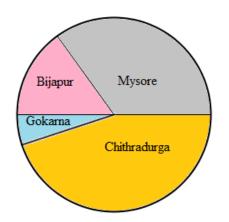

Exercise 6.3

- I. Draw pie charts to represent the following data
- 1. The number of students who are willing to join their favorite sports.

Name of the sport	Foot ball	Tennis	Volley ball	Hockey	Basket ball	Other
No. of students	35	14	10	6	5	2

Each student corresponds to $=\frac{360}{72}=5^{\circ}$

Name of the sport	No. of students	Angle corresponding to sectors
Foot ball	35	$35x5=175^{0}$
Tennis	14	$14x5 = 70^{\circ}$
Volley ball	10	$10x5 = 50^{0}$
Hockey	6	$6x5 = 30^{\circ}$
Basket ball	5	$5x5 = 25^{\circ}$
Other	2	$2x5=10^{0}$

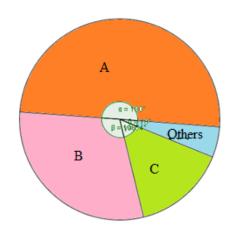


2. The survey carried out in the class regarding places of visit for excursion and the number of students who opted each place

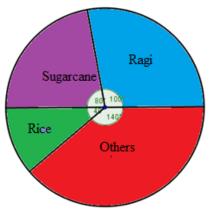
Places	Mysore	Bijapur	Gokarna	Chitradurga
Number of students	14	6	2	18

Each student corresponds to
$$=\frac{360}{40} = 9^0$$

Places	Number of students	Angle corresponding to sectors
Mysore	14	$14x9 = 126^{0}$
Bijapur	6	$6x9 = 54^{\circ}$
Gokarna	2	$2x9 = 18^{0}$
Chitradurga	18	$18x9 = 162^{\circ}$


3. A survey was conducted to study the various brands of soaps used by people in a village.

Brand of soap	Α	В	С	Others
Percent of Villagers	50%	30%	15%	5%


¹⁴SSLC CLASS NOTES: CHAPTER 6- STATISTICS

Each Soap corresponds to $=\frac{360}{100} = 3.6^{\circ}$

100				
Brand of	Percent of	Angle		
soaps	Villagers	corresponding to		
		sectors		
Α	50%	$50x3.6 = 180^{\circ}$		
В	30%	$30x3.6 = 108^{\circ}$		
С	15%	$15x3.6 = 54^{\circ}$		
Others	5%	$5x3.6 = 18^{\circ}$		

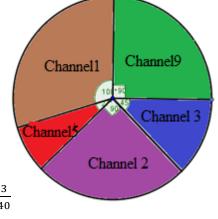
II. Study the pie charts given below and answer the questions in each case.

- 1. The given pie chart shows the annual agricultural yield of a certain place. If the total production is 8100 tons. answer the questions
- (i) What is the yield in tons of rice, ragi, sugarcane and others?
- (ii) How much percentage do the production of rage exceeds that of rice?
- (iii) If the yield of sugarcane on a different year was tons, find the yield of rice?
- What is the yield in tons of rice, ragi, sugarcane and others? i.

Rice
$$=\frac{8100}{360} \times 40 = 900$$
 Ton
Ragi $=\frac{8100}{360} \times 100 = 2,250$ Ton
Sugarcane $=\frac{8100}{360} \times 80 = 1,800$ Ton
Others $=\frac{8100}{360} \times 140 = 3,150$ Ton

- ii. How much percentage do the production of ragi exceeds that of rice? Production of ragi = 2,250 ton Production of rice = 900 ton The total production of ragi exceeds rice = 2,250-900 = 1350 ton

 - : The % of production of ragi exceeds rice $=\frac{1350}{8100}$ x100 = 16.66%


¹⁵SSLC CLASS NOTES: CHAPTER 6- STATISTICS

- (iii) If the yield of sugarcane on a different year was tons, find the yield of rice? If the production of sugarcane 1800 then the production of rice = 900ton
 - : If the yield of sugarcane is 2400 then the yield of rice = $\frac{2400}{1800}$ x900 = 1200 ton
- 2. A group of people were interviewed and asked which T.V. Channel they liked the most. The results are shown in the pie chart. Answer the questions

(i). What fraction of the people who were interviewed watched
(a) Channel 3
(b) Channel 5
(c) Channel 1
(d) Channel 2
(e) Channel 9
(ii) If there were 200 people how many view

(ii) If there were 200 people, how many viewed Each of the Channels

- (i). What fraction of the people who were interviewed watched
 - (a) Channel $3 = \frac{45}{360}x \ 1 = \frac{1}{8}$ (b) Channel $5 = \frac{27}{360}x \ 1 = \frac{3}{40}$
 - (c) Channel $1 = \frac{108}{360} \times 1 = \frac{3}{10}$ (d) Channel $2 = \frac{90}{360} \times 1 = \frac{1}{4}$
 - (e) Channel 9 $= \frac{90}{360} \times 1 = \frac{1}{4}$

(ii). If there were 200 people, how many viewed each of the Channels?

Channel 3 = $\frac{1}{8}x200 = 25$ Channel 1 = $\frac{3}{10}x200 = 60$ Channel 2 = $\frac{1}{4}x200 = 50$ Channel 3 = $\frac{1}{4}x200 = 50$